Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions
نویسندگان
چکیده
L’accès aux archives de la revue « Revue française d’automatique informatique recherche opérationnelle. Mathématique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
Duality of Multi-objective Programming
The convexity theory plays an important role in many aspects of mathematical programming. In recent years, in order to relax convexity assumption, various generalized convexity notions have been obtained. One of them is the concept of ) , ( r p B− invexity defined by T.Antczak [1], which extended the class of B − invex functions with respect toη and b and the classes of ) , ( r p invex function...
متن کاملOptimality and Duality for Multiple-Objective Optimization with Generalized α-Univex Functions
The aim of the present paper is to obtain a number of Kuhn-Tucker type sufficient optimality conditions for a feasible solution to be an efficient solution under the assumptions of the new notions of weak strictly pseudo quasi α-univex, strong pseudo quasi α-univex, and weak strictly pseudo α-univex vector valued functions. We also derive the duality theorems for Mond-Weir and general Mond-Wei...
متن کاملCharacterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملA note on the convexity of the indefinite joint numerical range
This note investigates the convexity of the indefinite joint numerical range of a tuple of Hermitian matrices in the setting of Krein spaces. Its main result is a necessary and sufficient condition for convexity of this set. A new notion of “quasi-convexity” is introduced as a refinement of pseudo-convexity.
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کامل